Nicotinic acetylcholine receptors at glutamate synapses facilitate long-term depression or potentiation.
نویسندگان
چکیده
The hippocampus is a center for learning and memory that receives abundant cholinergic innervation and richly expresses nicotinic acetylcholine receptors (nAChRs). Nicotinic mechanisms acting on the hippocampus influence attention, learning, and memory. During Alzheimer's dementia, nAChRs and cholinergic innervation decline in the hippocampus. Using mouse hippocampal slices, we examined the potential diversity of nAChR influences at the Schaffer collateral synapse onto CA1 pyramidal neurons. When nAChR currents were elicited locally at those excitatory synapses, various outcomes were possible depending on the relationship between the nAChR-mediated excitation and mild electrical stimulation. When mild presynaptic stimulation coincided with or preceded nAChR-induced action potentials by 1-5 s, then long-term potentiation was induced. However, if the nAChR-induced action potentials fell within 1 s before the electrical stimulation, then long-term depression resulted. Outside of these time frames, the mismatch of nAChR activity and stimulation led to short-term potentiation. The results indicate that nAChRs may have various influences over excitatory events in the hippocampus. Ongoing nAChR activity likely modulates the impact of glutamate transmission and alters the probabilities for various forms of synaptic plasticity. The fine network of cholinergic fibers running through the hippocampus forms synaptic contacts onto pyramidal cells, granule cells, and interneurons, ensuring continual modulatory influence by nicotinic mechanisms throughout the hippocampal complex. Disruption of events such as those described here may contribute to the deficits associated with the decline of nicotinic cholinergic functions during degenerative diseases such as Alzheimer's dementia.
منابع مشابه
(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملIn hippocampal oriens interneurons anti-Hebbian long-term potentiation requires cholinergic signaling via α7 nicotinic acetylcholine receptors.
In the hippocampus, at excitatory synapses between principal cell and oriens/alveus (O/A) interneurons, a particular form of NMDA-independent long-term synaptic plasticity (LTP) has been described (Lamsa et al., 2007). This type of LTP occurs when presynaptic activation coincides with postsynaptic hyperpolarization. For this reason it has been named "anti-Hebbian" to distinguish from the classi...
متن کاملP6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation
Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...
متن کاملLong-Term Potentiation of Excitatory Inputs to Brain Reward Areas by Nicotine
Nicotine reinforces smoking behavior by activating nicotinic acetylcholine receptors (nAChRs) in the midbrain dopaminergic (DA) reward centers, including the ventral tegmental area (VTA). Although nicotine induces prolonged excitation of the VTA in vivo, the nAChRs on the DA neurons desensitize in seconds. Here, we show that activation of nAChRs on presynaptic terminals in the VTA enhances glut...
متن کاملGlutamate and gamma-aminobutyric acid mediate a heterosynaptic depression at mossy fiber synapses in the hippocampus.
Mossy fiber synapses form the major excitatory input into the autoassociative network of pyramidal cells in the CA3 area of the hippocampus. Here we demonstrate that at the mossy fiber synapses, glutamate and gamma-aminobutyric acid (GABA) act as autaptic and heterosynaptic presynaptic inhibitory transmitters through metabotropic glutamate receptors (mGluRs) and GABAB receptors, respectively. B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 26 شماره
صفحات -
تاریخ انتشار 2005